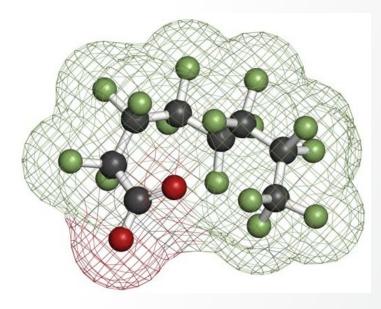

Determination of PFAS in Drinking Water Using Automated Solid Phase Extraction and LC-MS/MS for U.S. EPA Method 533

Chris Shevlin – Thermo Fisher Scientific

2021 NEMC Bellevue, WA

Proprietary & Confidential | chris.shevlin@thermofisher.com | 6-August -2021

Sources and Where PFAS is Found in the Environment

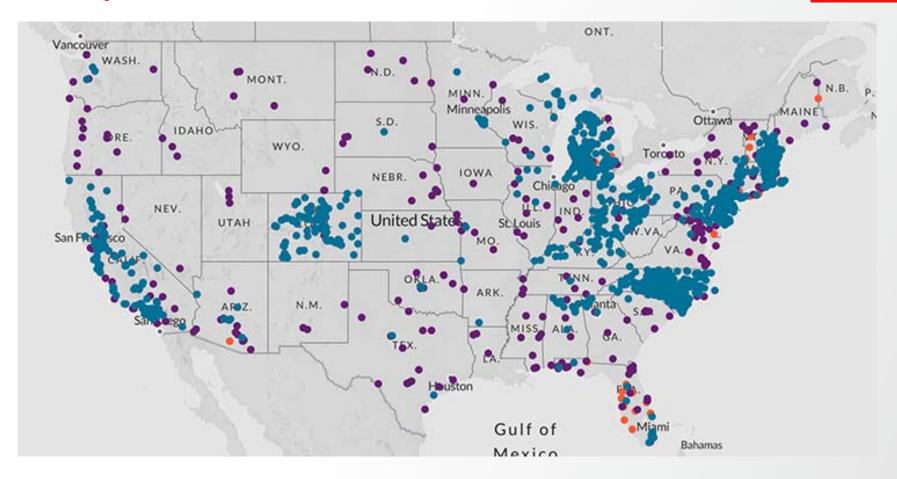

Thermo Fisher

Why PFAS Analysis is Important

Persistence

Bioaccumulation

- C-F bonds very strong; do not break down
- Called "Forever Chemicals"


- Cannot be metabolized
- Build up in biological systems over time

Thermo Fisher

- Affects growth, learning, behavior
- Endocrine interference
- Increase cholesterol levels
- Affect the immune system
- Increase the risk of cancer
- Infertility

PFAS Hotspots

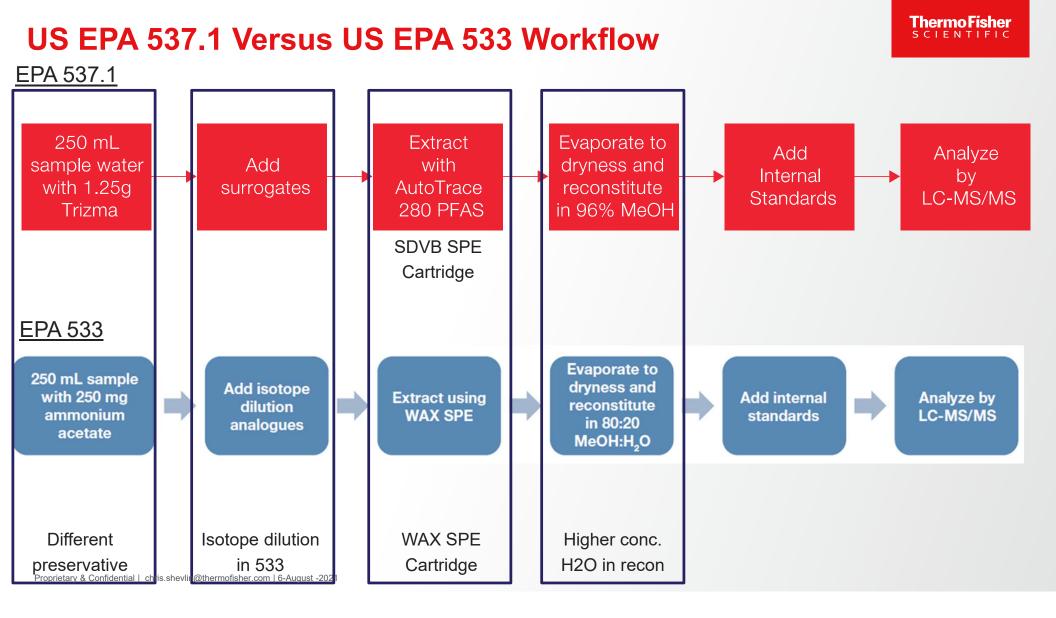
https://www.ewg.org/interactive-maps/2019 pfas contamination/map/

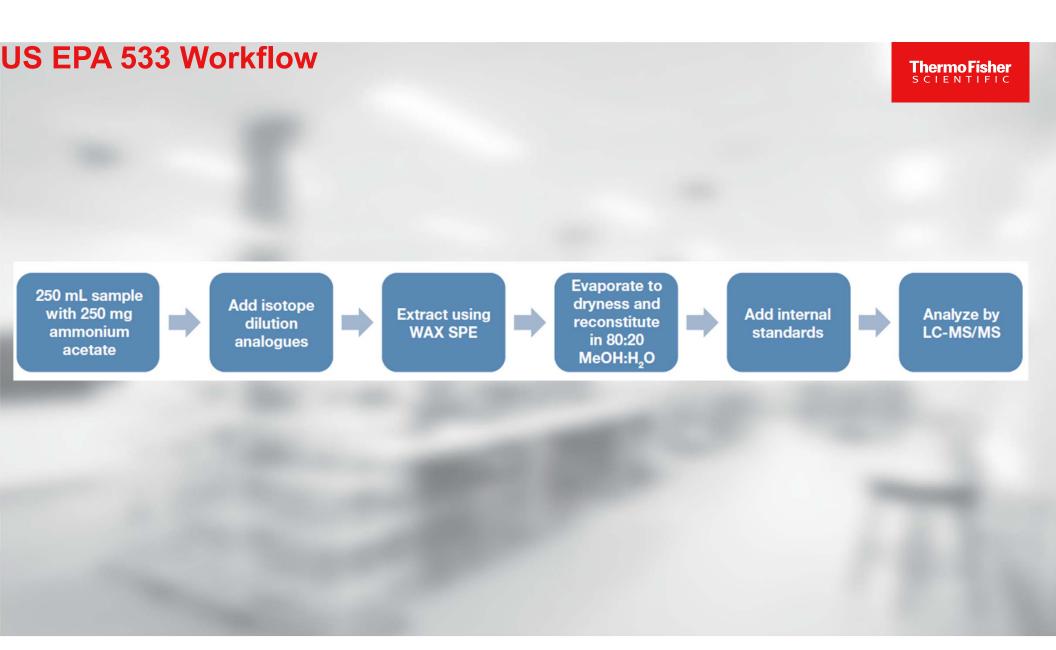
Drinking Water Methods and Regulation

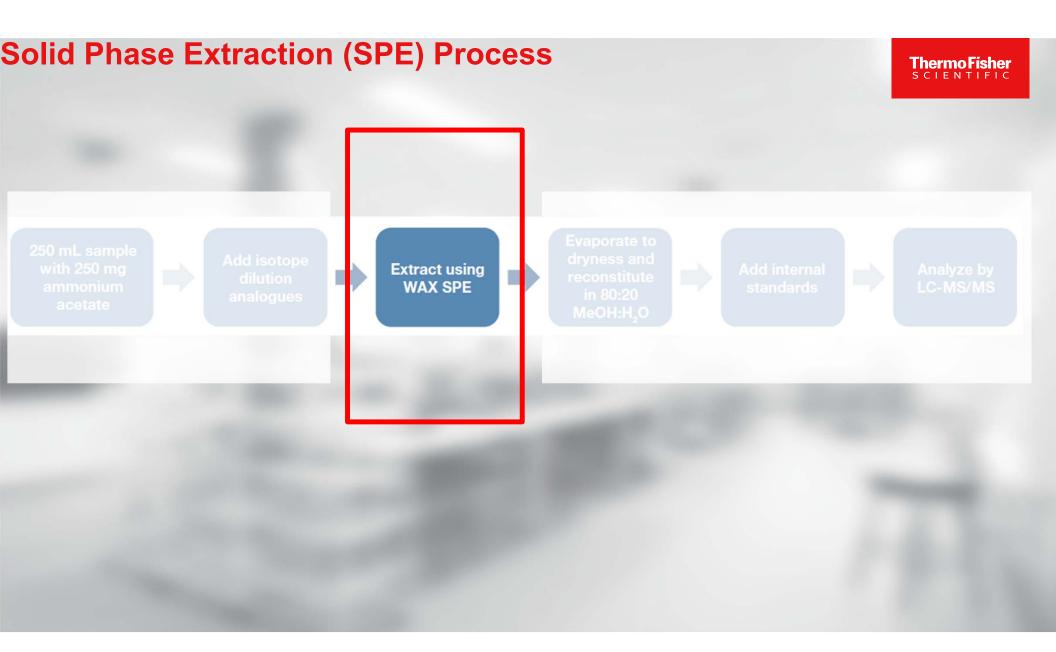
- US EPA 537, 537.1 and 533 drinking water
- EPA 8327 water, soil, biota
- ASTM 7979 water, sludge and wastewater
- The maximum contaminate level (MCL) for the 18 PFAS compounds is 0.53 6.3 ng/L (ppt).
 - National total PFAS MCL is 70 ppt in drinking water
 - Individual states have set lower limits down to 10 ppt
- Background interference
 - Must be maintained below 1/3 of the MRL value
 - Example sources: Reagents, containers, clothing, labware and laboratory instrumentation (PTFE tubing)

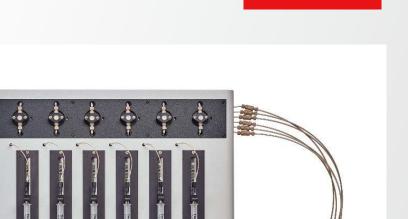
PFAS Analysis Considerations

- Background contribution
 - Personal care products and clothing
 - Sample containers and devices Must be polypropylene
 - Waterproof documents and markers
 - Adhesive products and shipping materials
 - Laboratory items Especially gloves and other lab ware
 - Analytical Instrumentation


- Sample preparation
 - Multiple manual steps in collection and sample prep
 - Target compounds can adhere to surfaces
 - Extraction efficiency vary by compound
 - Recovery and reproducibility is a challenge


Why a second targeted PFAS Method


- Focus on short chain PFAS (Carbon lengths 4 to 12)
- Adds an additional 11 PFAS compounds over EPA 537.1
- Does not cover 4 of the compounds in EPA 537.1

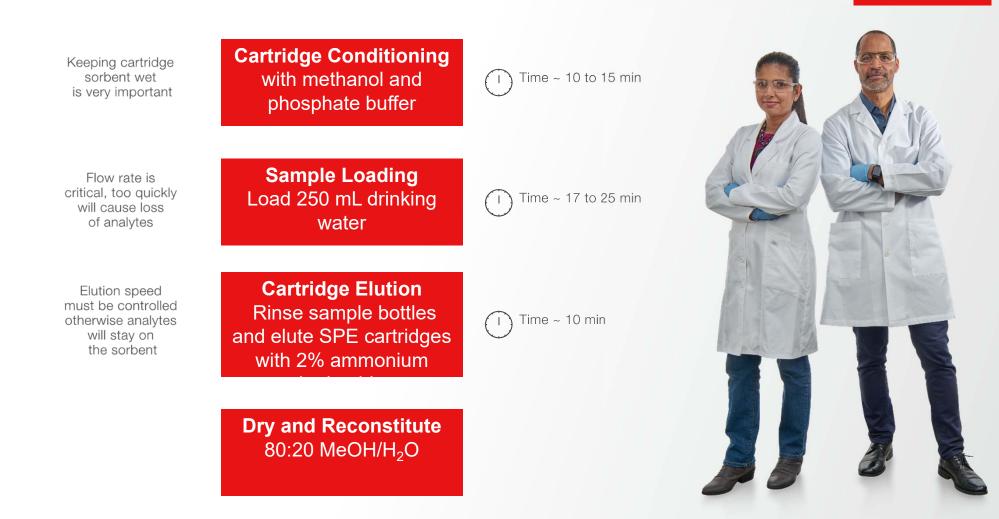

US EPA 533 was made to target the more water soluble PFAS molecules

Analyte	Abbreviation	CASRN	Method 533	Method 537.1
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11CI-PF3OUdS	763051-92-9	x	x
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acd	9CI-PF3ONS	756426-58-1	x	x
4,8-Dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4	x	x
Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6	x	x
Perfluorobutanesulfonic acid	PFBS	375-73-5	3-5 x	
Perfluorodecanoic acid	PFDA	335-76-2 ×		×
Perfluorododecanoic acid	PFDoA	oA 307-55-1		×
Perfluoroheptanoic acid	PFHpA	375-85-9 x		x
Perfluorohexanoic acid	PFHxA	307-24-4	x	×
Perfluorohexanesulfonic acid	PFHxS	FHxS 355-46-4		×
Perfluorononanoic acid	PFNA	375-95-1		x
Perfluorooctanoic acid	PFOA	335-67-1	×	x
Perfluorooctanesulfonic acid	PFOS	1763-23-1	x	x
Perfluoroundecanoic acid	PFUnA	2058-94-8	×	x
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	4:2FTS	757124-72-4	x	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	6:2FTS	27619-97-2	×	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	8:2FTS	39108-34-4	x	
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6	×	
Perfluorobutanoic acid	PFBA	PFBA 375-22-4		
Perfluoro(2-ethoxyethane)sulfonic acid	PFEESA	113507-82-7	x	
Perfluoroheptanesulfonic acid	PFHpS	PFHpS 375-92-8		
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5	×	
Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1	x	
Perfluoropentanoic acid	PFPeA	2706-90-3	×	
Perfluoropentanesulfonic acid	PFPeS	2706-91-4	x	
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6		x
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9		x
Perfluorotetradecanoic acid	PFTA	376-06-7		x
Perfluorotridecanoic acid	PFTrDA	72629-94-8		x

Thermo Fisher S C I E N T I F I C

Sample Prep Devices

Sample Extraction and Clean up



Vacuum Manifold

Thermo Scientific [™] Dionex[™] AutoTrace[™] 280 PFAS Solid-Phase Extraction Instrument

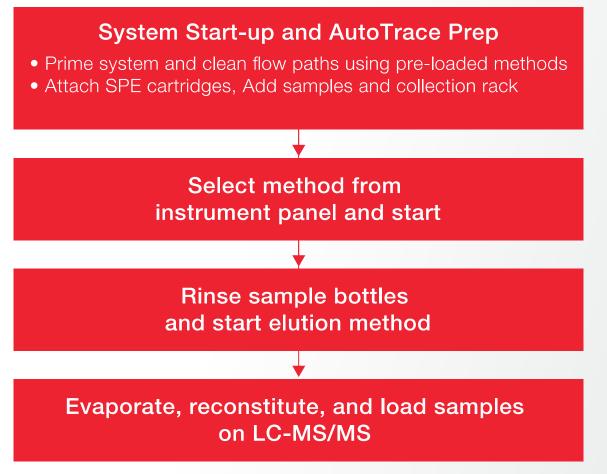
. . . .

DIONEX AutoTrace 280 PFA

ThermoFisher scientific

Solid Phase Extraction – EPA Method 533

Proprietary & Confidential | chris.shevlin@thermofisher.com | 6-August -2021


Vacuum Manifold

- 100% manual process Analyst must dedicate time to do the extraction
- Manual interaction leads to PFAS background
- Extraction quality is very technique dependent
- Differential pressure across the manifold
 - Stronger pull-on cartridges closest to the outlet
 - Causes variable flow rates from cartridge to cartridge
 - Flow rate control is important
 - Individual cartridge valve needs to be set properly
- Different manifold housing needed for each step
- Multiple cartridge loading required at each step
 - 15 and 18 mL into 6 mL cartridge when conditioning
 - 250 mL into 6 mL cartridge

Thermo Scientific Dionex AutoTrace 280 PFAS Instrument Extraction Method

Proprietary & Confidential | chris.shevlin@thermofisher.com | 6-August -2021

Automated Solid Phase Extraction for Liquid Samples

Thermo Fisher

- Automation
 - No constant attendance necessary Walk up operation
 - Method stored on the AutoTrace 280 PFAS No software required
- PEEK sample/solvent lines and other flow path components
 - Ensures automation without the risk of background contamination
- Uses a positive pressure pump to deliver samples and solvents
 - Consistent flow rates precise control at every step
 - Improved extraction performance
- Achieve lower detection limits
 - Can load up to 4L of sample

Thermo Scientific Dionex AutoTrace 280 PFAS Instrument vs Manual Methods

Lowers background contamination risk

- Non-fluoropolymer-based materials
- Fewer manual touch points

Better Data Quality

- · Improved reproducibility and recoveries
- Lower risk of rerunning or resampling

Positive pressure instead of vacuum

- Allows for more precise control over the process
- Ensures proper flow rates at critical steps
- · Sorbents stay wet when required

Significant labor savings

- Minimal user interaction required
- · Analysts can accomplish other lab tasks
- Lower costs due to increased efficiency

Proprietary & Confidential | chris.shevlin@thermofisher.com | 6-August -2021

Thermo Fisher SCIENTIFIC

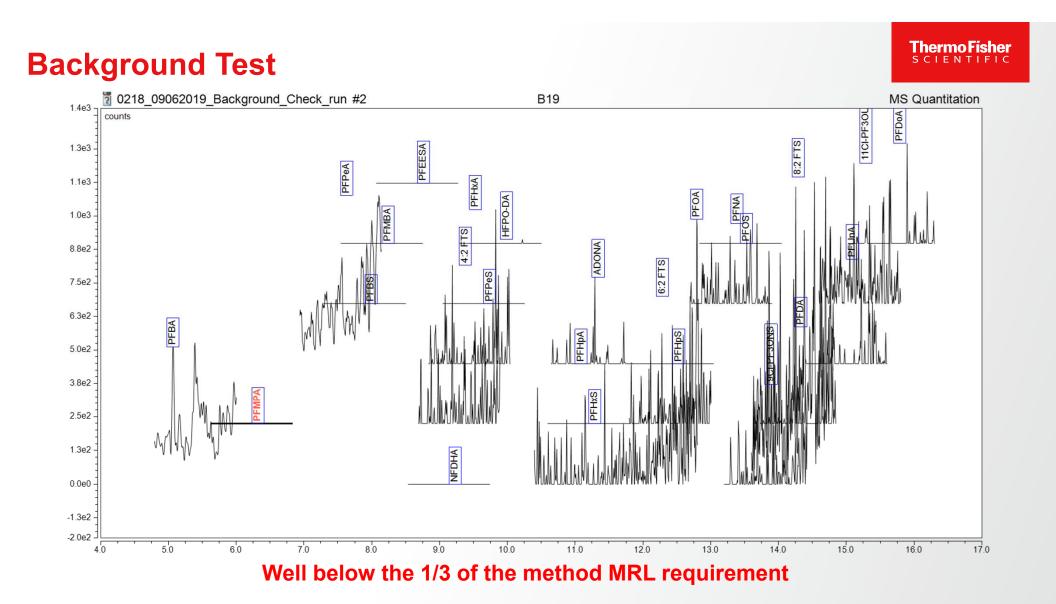
ThermoFisher SCIENTIFIC

Vacuum SPE vs Thermo Scientific Dionex AutoTrace 280 PFAS Instrument

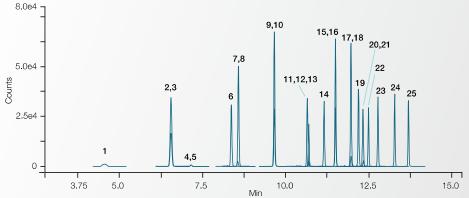
- Vacuum SPE
 - Problems maintaining consistent flow
 - Cannot let it run dry affects the flow rate and performance
 - Inconsistent volumes run to run
 - Requires constant attendance

- AutoTrace 280 PFAS
 - Pumps are set at a constant flow
 - Ensures cartridges do not dry on critical steps
 - Precise consistency run to run
 - Push "start" and have a cup of coffee

LC-MS/MS Analysis


Thermo Fisher

Thermo Scientific™ Vanquish™ Duo UHPLC Systems With PFC-Free Kit



Thermo Scientific™ TSQ Fortis™ Triple Quadrupole Mass Spectrometer

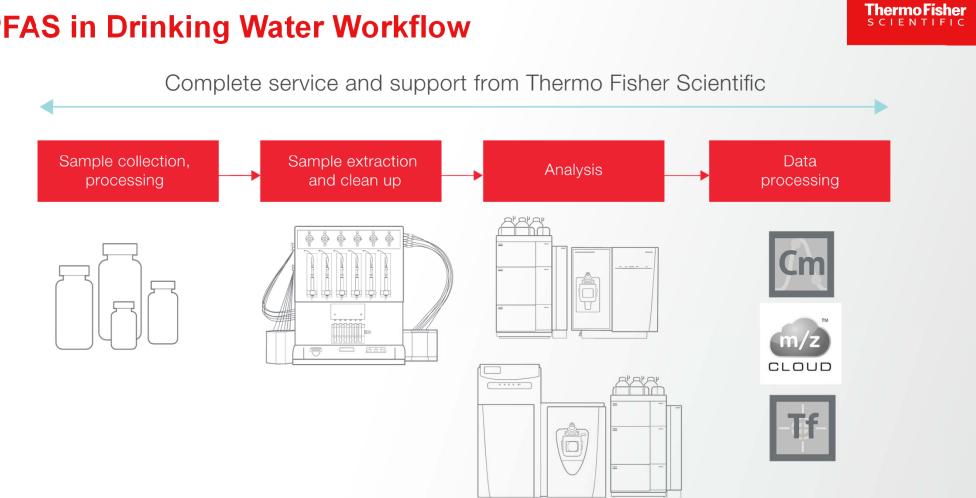
EPA 537.1 Performance Data using Thermo Scientific Dionex AutoTrace 280 PFAS

Peak number	Analyte	Fortified Conc. (ng/L)	Mean Recovery (%)	RSD	Fortified Conc. (ng/L)	Mean Recovery (%)	RSD
1	PFBS	16.0	107	3.3	80.0	98.3	3.6
2,3*	PFHxA	16.0	108	2.3	80.0	106	2.6
4,5*	HFPO-DA	16.0	84.1	7.5	80.0	88.6	6.3
6	PFHpA	16.0	113	2.7	80.0	117	1.3
7	PFHxS	16.0	120	3.4	80.0	123	2.1
8	ADONA	16.0	117	2.5	80.0	121	1.1
9,10*	PFOA	16.0	113	2.5	80.0	119	1.6
11	PFNA	16.0	114	2.9	80.0	118	2.1
12,13*	PFOS	16.0	113	4.5	80.0	117	2.9
14	9CI-PF3ONS	16.0	96.1	4.1	80.0	103	2.6
15*,16	PFDA	16.0	105	3.2	80.0	111	2.1
17*,18	NMeFOSAA	16.0	103	5.2	80.0	110	5.2
19	PFUnA	16.0	96.8	5.0	80.0	103	3.1
20*21	NEtFOSAA	16.0	100	9.9	80.0	104	2.3
22	11CI-PF3OUdS	16.0	88.5	5.5	80.0	97.1	4.8
23	PFDoA	16.0	89.8	4.4	80.0	97.3	3.4
24	PFTrA	16.0	89.6	3.8	80.0	95.8	3.7
25	PFTA	16.0	89.0	4.8	80.0	98.1	3.3

Precision and accuracy (n=6) of PFAS in fortified drinking water

All recoveries and precision are well with in the method requirements

- Recovery must be 70 130%
- RSD < 20%


EPA 533 Performance Data

	Fortification (ng/L)	REC (%) (P@A Low)	RSD (P@A Low)	REC (%) (P@A High)	RSD (P@A High)
¹³ C ₄ -PFBA	40	105	6.1	106	6.7
¹³ C ₅ -PFPeA	40	102	4.8	105	6.0
¹³ C ₃ -PFBS	40	106	2.6	117	3.9
¹³ C ₂ 4:2 FTS	160	110	3.3	121	6.4
¹³ C ₅ -PFHxA	40	95.5	3.9	97.7	4.1
¹³ C ₃ -HFPO-DA	40	109	15	120	13
¹³ C ₄ -PFHpA	40	106	4.8	111	7.4
¹³ C ₃ -PFHxS	40	99.1	6.5	104	5.3
¹³ C ₂ -6:2 FTS	160	102	4.9	115	8.8
¹³ C ₈ -PFOA	40	101	6.7	106	8.4
¹³ C ₉ -PFNA	40	97.9	5.9	106	11
¹³ C ₈ -PFOS	40	92.3	11	105	13
¹³ C ₂ -8:2 FTS	160	97.6	8.3	103	11
¹³ C ₆ -PFDA	40	96.2	7.4	104	11
¹³ C ₇ -PFUnA	40	90.0	9.0	92.8	14
¹³ C ₂ -PFDoA	40	91.7	7.7	94.5	14

Recovery range 91% - 110% %RSD for all PFAS <20

Number	Analytes	Fortification levels (ng/L)	LCMRL (ng/L)
1	PFBA	1.0, 2.0,4.0, 6.0, 10, 14, 20	8.6
2	PFMPA	1.0, 2.0,4.0, 6.0, 10, 14, 20	4.5
3	PFPeA	1.0, 2.0,4.0, 6.0, 10, 14, 20	3.9
4	PFBS	1.0, 2.0,4.0, 6.0, 10, 14, 20	3.2
5	PFMBA	1.0, 2.0,4.0, 6.0, 10, 14, 20	3.9
6	PFEESA	1.0, 2.0,4.0, 6.0, 10, 14, 20	3.4
7	NFDHA	1.0, 2.0,4.0, 6.0, 10, 14, 20	5.7
8	4:2 FTS	1.0, 2.0,4.0, 6.0, 10, 14, 20	7.0
9	PFHxA	1.0, 2.0,4.0, 6.0, 10, 14, 20	3.2
10	PFPeS	1.0, 2.0,4.0, 6.0, 10, 14, 20	2.6
11	HFPO-DA	1.0, 2.0,4.0, 6.0, 10, 14, 20	7.4
12	PFHpA	1.0, 2.0,4.0, 6.0, 10, 14, 20	3.4
13	PFHxS	1.0, 2.0,4.0, 6.0, 10, 14, 20	6.5
14	ADONA	1.0, 2.0,4.0, 6.0, 10, 14, 20	1.6
15	6:2 FTS	1.0, 2.0,4.0, 6.0, 10, 14, 20, 40	5.7
16	PFOA	1.0, 2.0,4.0, 6.0, 10, 14, 20	3.9
17	PFHpS	1.0, 2.0,4.0, 6.0, 10, 14, 20, 40	5.8
18	PFNA	1.0, 2.0,4.0, 6.0, 10, 14, 20	2.8
19	PFOS	1.0, 2.0,4.0, 6.0, 10, 14, 20	5.2
20	⁹ CI-PF ₃ ONS	1.0, 2.0,4.0, 6.0, 10, 14, 20	2.9
21	8:2 FTS	1.0, 2.0,4.0, 6.0, 10, 14, 20, 40	9.5
22	PFDA	1.0, 2.0,4.0, 6.0, 10, 14, 20	2.1
23	PFUnA	1.0, 2.0,4.0, 6.0, 10, 14, 20	4.1
24	¹¹ CI-PF ₃ OUdS	1.0, 2.0,4.0, 6.0, 10, 14, 20	2.4
25	PFDoA	1.0, 2.0,4.0, 6.0, 10, 14, 20,40	4.8

Lowest concentration minimum reporting limits

PFAS in Drinking Water Workflow

Conclusions

The Dionex AutoTrace 280 PFAS Instrument

- Improves lab efficiency
- Requires less user interaction to accomplish solid phase extraction steps
- Operates well within the method requirements
- Greatly reduces risk of errors
 - Gives better assurance of high data quality
 - Fewer occurrences of rerunning or resampling
- Helps to keep background at a minimum
 - Reduces manual touch points which can introduce background

Learn More

- thermofisher.com/pfas
- Download our complete PFAS kit to learn more:
 - View webinars
 - How to perform PFAS analysis for targeted and non-targeted analysis
 - Database information for unknowns

Critical information for robust PFAS analysis

Thermo Fisher

thermo scientific

APPLICATION NOTE

73883

Determination of per- and polyfluorinated alkyl substances (PFAS) in drinking water

Using automated solid phase extraction and LC-MS/MS for U.S. EPA Method 533

Authors: Xin Zhang, Changling Qiu, Rahmat Ullah, and Yan Liu Thermo Fisher Scientific, Sunnyvale, CA

Application Note Authors: Xin Zhang, Changling Qiu, Rahmat Ullah, and Yan Liu

Thank you!

Thank you for your time and attention!

Questions?